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Abstract 
I discuss experiences with SRE by three teams working for Agilent Technologies in Colorado Springs. After setting 
the scene with a brief explanation of the teams and a history of our adoption of SRE, I explain how we now use it. I 
cite some specific processes and techniques, comparing them to the formal methods taught by John Musa in his 
book Software Reliability Engineering. For each process and technique, I present data that demonstrates 
improvements to software quality, and I show how those improvements are a direct result of our use of SRE 
principles. 

About Our Organization 
This paper discusses work performed by three Agilent Technologies teams who design and manufacture instruments 
and systems primarily used by digital design engineers. Our products have included oscilloscopes, logic analyzers, 
and microprocessor development systems (emulators). Our work with SRE spans over a decade, during which some 
organizational changes have occurred. The most drastic change was our recent spin-off from Hewlett-Packard 
Company to become the new, independent company Agilent Technologies. Our product lines have remained the 
same, though. The Agilent Infinium oscilloscope, the Agilent 16702B Logic Analysis System, and the HP 64700 
Microprocessor Development System (emulator) are show below. 

Our software development environments span a wide range of conditions – from minicomputer applications to 
embedded firmware. Our emulator software runs as an application on UNIX workstations. The interfaces of some 
oscilloscope products run as applications under Microsoft Windows 95, where Windows is embedded in the 
instrument. Our logic analyzer product line includes a system that runs UNIX in a closed environment; i.e. the user 
sees a self-contained graphical interface and has no access to the native operating system. Other logic analyzers and 
oscilloscopes are embedded systems that run small, real-time operating systems. We are also beginning to develop 
Microsoft additional Windows applications, some of which will run as standalone applications on a PC. Practically 
all of our software is written in either C or C++. 

History 
It's important to share stories about how ideas spread through organizations. By sharing stories of what worked and 
what didn't, we all can learn how to improve the adoption of new, useful ideas. 

Agilent in Colorado Springs began applying SRE in the late 1980’s. At that time the emulator team relocated several 
miles from the "mother" campus, so we were isolated. [LESSON: beware the effects of isolation on process 
adoption.] I had the role of engineering productivity manager for that team. My department also provided 
engineering services, including printed circuit board layout. One software process engineer (Jim Jost, a statistician 
by training) and I were attempting to influence the strategic direction of the software development process. 
[LESSON: it only takes one individual and a manager who supports the idea.] We served about 80 product 
development engineers – slightly less hardware than software (which includes firmware). 

Earlier in the decade we were bitten by a software product line that had not been developed with reliability 
engineering in mind. After the products had been out for a while, the customer complaints drove us to assign a large 
team (around a dozen) to repair the backlog of defects. We called it the Bugbusters project. Jim worked with new 
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product development teams to learn what could be done to avoid another Bugbusters fiasco. [LESSON: if you want a 
different result, you have to do something differently.] 

Thanks to Bugbusters, for the first time we were regularly monitoring the trends in software defect repair. That isn’t 
to say that our quality department hadn’t been tracking customer-reported defects before, but Bugbusters put the data 
on the front page of the division manager’s newspaper and kept it there, so to speak. 

In addition to Bugbusters, the CEO of HP challenged the company to improve the quality of HP software by a factor 
of 10. We had always tracked the number of unfixed defects over time; but this was also the period where we began 
developing a formal, data-driven testing process before software product release1. Our process improvement 
methods focused on the goal of driving the software toward release. We started enforcing release criteria for our 
software products. Our software QA manager argued for the value of finding system failures ourselves before our 
customers found them for us. We began tracking pre-release testing effort. We agreed on a standard method for 
measuring time spent testing, and we enforced requirements on minimum times to be met. We committed to a 
standard method for counting source statements, and we derived the defect densities of our products both before 
they were released and afterward. Early on, we agreed that a defect rate of 0.2 was our release goal, and that has not 
changed since. (See the section on “Adjusting the moving average to smooth the defect rate” for more about defect 
rates.) We agreed on the defect severity classification shown in Table 1 on p. 4. The wording has varied only 
slightly, and we have found the "bullet-item" descriptions to be sufficient. 

Processes and Techniques 
An organization’s culture impacts its implementation of software quality methods. [LESSON: recognize the impact 
of culture on implementation of SRE.] In the Agilent culture (inherited from HP), we expect engineers to develop 
one product end-to-end and then to move on to a new project. We don’t have a high level of services that some R&D 
labs employ, such as technicians who offload routine tasks from the design engineers. Our software engineers 
almost always design and run their own tests in addition to their primary task, which is to design and implement 
products. Not many test procedures are written down for technicians or temp agency testers to follow. We encourage 
the creation of test plans, but they are typically written in generalities that assume an engineer who is familiar with 
the product will derive the details of the test procedure. 

These are the most significant processes and techniques we have in place to ensure the quality of our software. 

• Applying the “Black Team” principle 

• Measuring test time 

• Weighting defects 

• Adjusting the moving average to smooth the defect rate 

• Counting source statements to measure defect density 

• Measuring how a software system changes over time (turmoil) 

One common principle applied in all six of these topics is summed up in one word: pragmatism. In the following 
sections I discuss each of these topics in more detail, including both how our culture influences our implementation 
and how we apply pragmatism. 

Applying the “Black Team” principle 

Tom DeMarco’ s colorful account of the original,  “ legendary”  Black Team at IBM can be found in [TD82] pp. 221-
222. For the dry purposes of this paper, it suffices to say that a Black Team’ s top motivation is the discovery of 
defects, while a code developer’ s top motivation is the correct behavior of the code. It’ s a subtle difference – 
programmers righteously resent the implication that they don’ t try hard to uncover defects in their code before they 
release it. However, most programmers will also admit that at some point defect detection becomes more efficient 
when someone other than the developer tests the software. As Eric S. Raymond observed, “ Given enough eyeballs, 
all bugs are shallow.” 2 

We always accepted the principle of the Black Team, but we had to adapt our culture to take full advantage of it. 
Our culture frowns on a separate test team, but it encourages temporarily increasing staff to accelerate progress. In 

                                                           
1 This work was done in isolation of other SRE research being done in the industry at-large during that time. 

2 Raymond credits Linus Torvalds with the inspiration for this quotation, which he dubs “ Linus' Law.”  The “ mainstream”  source for the 
quotation is [ESR99], but http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/x147.html archives the earliest source (1997), 
originally distributed freely on the Internet. 



 - 3 of 13 - 

this specialized case, Brooks’  Law3 doesn’ t apply: staffing up projects at the end to perform tests in parallel does 
indeed get our products to market faster. Early in our work on SRE, we found that we could recruit engineers from 
other projects to help with testing. But the dynamics have been extremely sensitive at times. Managers were 
reluctant to release engineers from their primary projects – even for only 4 to 8 hours. Engineers also sometimes 
resisted the mental “ context switch”  required between their singular project and the test plans for other product 
features. As our track record with SRE grew, though, it became easier to convince both managers and engineers of 
the value of sharing the test load. At last, a decade later, we have internalized this staffing technique to the level of 
policy4 – we have strong support at all levels of management to staff test efforts adequately. 

Such policies are enforced by our manager of Software Process Improvement and Testing, John Rasper. He works 
with the other project managers in the lab to schedule their engineers’  testing time commitment. In fact, John also 
recruits project managers and the marketing staff as testers. John works with the logic analyzer/emulator team. Mark 
Lambuth fills the same role for the oscilloscope team. We have all bought into the benefit of part-time Black Team 
testers. The time commitment varies. For individuals, 4 to 8 hours per release is common, but so is 2 to 4 hours a 
week until the product is released. We budget anywhere from 350 to 2,000 hours of test time, depending on the 
magnitude of the product release. 

Our test strategy is not as formal as one that employs Musa’ s Operational Profiles [JM99]. We use heuristics to 
identify regions of the code that have the greatest risk of affecting product quality. The heuristics are based on two 
key concerns: 

1. Regions of code that were changed since the last test cycle. We don’ t concentrate on features that already have 
been tested. (No product ever has 100% new code.) 

2. New features. We want to make a good impression on customers who are upgrading. 

The test manager assigns each tester to target one or more specific features. We have a dedicated test area stocked 
with systems running copies of our “ golden bits5.”  The testers are expected to sign up for time on the systems in the 
test area and to try to uncover defects in the product. Instead of calling them a Black Team, we use the term “ abuse 
testers.”  They test permutations of feature options, look for boundary conditions, configure the system at the limits 
of specifications (e.g. loading a system with the maximum set of cards), and try anything else that they believe may 
uncover a defect that a customer would otherwise encounter.  

We’ ve also seen unexpected benefits by recruiting testers from other projects. There’ s a greater sense of camaraderie 
in the lab. Project teams hold one another to “ fairness”  – “ we tested for you, now it’ s your turn to do it for us.”  
While they’ re testing, engineers get a much broader understanding of how customers use our products; and ideas 
about better ways to serve our customers get “ cross-fertilized”  among project teams. Like IBM’ s Black Team, our 
recruits are motivated to find bugs. Gifted testers develop a reputation for uncovering tenebrous problems, and they 
are sought out for the next test cycle to repeat their feats. Their names are spoken with awe and reverence. We 
motivate testers by putting snack foods in the test area. We thank testers with certificates for free cappuccino (and 
sometimes even certificates for free dinners). We reward everyone who tests for a minimum number of hours with 
an invitation to attend a group activity – we all carpool to the local theater to watch a movie together. The “ QA 
movie,”  like abuse testing itself, has become elevated to the status of unwritten policy6. Testing has almost become 
fun around here! 

Measuring test time 

We track time spent testing the product to the nearest half-hour. Every activity that can be traced to the effort 
required to test the product is counted in this time. For example, all of these are understood to be testing activities 
counted in test time metrics: 

• running the actual test (of course) 

• configuring the system for test (e.g. setting up a target system for a scope measurement) 

• studying test plans 

                                                           
3 Brooks’  Law: “ Adding manpower to a late software project makes it later.”  See [FB95]. 
4 Not that Agilent or HP culture has ever been one that encouraged writing a thick policy manual. Our “ policy”  of recruiting engineers to help 
test products before release is de facto. 
5 Every organization has its own version of “ golden bits.”  The term is a nickname for the best version of the software at any given time. We build 
our software products in a tightly controlled environment – sometimes we build the system more than once a day. Our configuration and build 
management system contributes greatly to our organization’ s success, but its operation is beyond the scope of this paper. 
6 That is, we all take it for granted that after a release there will be a QA movie, and the questions of when it’ s going be and which movie we 
should see are routinely asked around the break stands after release. 
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• reading documentation to understand a new feature being tested 

This convention has been in use for over a decade. We chose this relaxed definition of test time to simplify the 
judgment needed to collection of test time. We wanted to maximize compliance from engineers reporting the data. 
Partly, this was a compromise to eliminate cavils about what to count. It has also proven effective in obtaining buy-
in from managers who want to know exactly how much time they are signing their engineers up for. 

Weighting defects 

As I said in the History section, our wording of defect classifications has varied only slightly since it was written 
down over a decade ago, and we have found the "bullet-item" descriptions to be sufficient for classifying all our 
software defects. Testers accurately classify severity, but occasionally they are overruled – sometimes higher and 
sometimes lower. Table 1 documents our entire policy for defect classification and weighting. The graphs don’ t 
show much of a difference between the weighted and non-weighted data, but note in Figure 3 (the weighted version) 
that we cross the release goal line at 742 hours, and in Figure 4 (the non-weighted version) we cross it at 711 hours. 
This isn’ t a drastic difference; however, weighting the defects by severity helps eliminate objections to managers’  
concerns that we don’ t “ care”  enough about critical defects when compared with defects of the lowest severity. We 
respond to this objection by pointing out that our weighting system values a critical defect at nine times over the 
impact of a low-severity defect. 

Critical (weight = 1.8) 
• Product is unusable due to:  

• Crashing (terminates in unexpected or 
abnormal manner) 

• Hanging (stops responding to normal user 
interactions, must kill or restart) 

• Data loss (stored data or user input is lost, 
changed, or added to in a manner not consistent 
with normal operation) 

• Product is usable, but produces incorrect data and 
does not warn of error 

Serious (weight = 1.4) 
• Product does not perform as advertised in datasheet, 

manual, application literature 

• Product is usable, but severely restricted 

• Customer cannot use the product to get their job 
done without risking the loss of data from the 
current work session or loss of previously acquired 
data 

• Product is usable but produces incorrect data and 
warns that an error may have occurred 

Medium (weight = 0.8) 

• Product is usable, but there are some limitations in 
the feature set  

• Problems are obvious and repairable without 
extensive effort  

• If a defect impairs the ability for the user to get their 
job done, then a workaround solution must exist  

• The customer is annoyed, but the defect does not 
cause them to stop using the product  

• The product does not perform the way it was 
intended to, but the user can still get the job done 

Low (weight = 0.2) 

• Product is functionally correct  

• Product is usable with a small amount of 
inconvenience  

• Product performs in an inconsistent manner, or may 
require some effort by the user to proceed  

• Workarounds are obvious and easy to use  

• Cosmetic defects, on-line help defects, packaging 
defects  

• Customer experiences a small amount of frustration 
because the product contains minor problems, but 
they are able to ignore them  

• Defects are easy to fix and have a low impact on the 
product without a high priority to be fixed  

• The customer probably will not call Agilent to 
complain about this defect 

Table 1: defect severity classes 

Adjusting the moving average to smooth the defect rate 

At Agilent Technologies, we measure the defect rate of our software. It is similar to failure intensity, but while 
Musa defines failure intensity as “ the derivative of the mean value function with respect to time[,]… an 



 - 5 of 13 - 

instantaneous value 7,”  we define the defect rate to be a moving average8 with respect to a specified period of time. 
For over a decade we have experimented with what that period of time should be. We’ ve used rates of between 20 
and 50 percent of the total test time. For instance, on one project with 180 hours of abuse test time, we used a 40-
hour moving average; on another project with just over 2,000 hours of test time, we measured the rate for a 1,100-
hour moving average. We also begin with a smaller period (e.g. 10 hours) to get data early in the test cycle. Figure 1, 
Figure 2, and Figure 3 show the difference for one project using 25, 50, and 100-hour moving averages. 

Because the smoothing resulting from different periods for the moving average is proportional to the size of the 
period, we use a larger number if we want a more “ conservative”  perspective on the quality of the software. Notice 
in Figure 1 that we temporarily dropped below our release goal between 440 and 494 hours of testing. Figure 2 
shows a smaller dip at 480 hours, and Figure 3 shows no dip at all in that timeframe. We often plot with different 
periods to convince ourselves that the rate is safe to accept. We may want to be conservative because a product is 
expensive to upgrade in the field, or because we need to make an especially good impression with a product. We 
may not be so conservative if we are testing an interim release for which mistakes can be corrected in the next 
release. 

As was mentioned in the History section, our release goal is a rate of 0.2 defects found per time period specified by 
the moving average. Originally, we chose 0.1 based on the literature in the late 1980’ s9. Our experience later 
convinced us that 0.2 was sufficient, and we’ ve kept it because we’ re satisfied with the results it gives us. 

                                                           
7 [JM99], p. 31 
8 We are aware of the Slutsky-Yule effect: in moving averages on data that is relatively constant except for occasional random events, the 
random event appears to be a cyclical fluctuation. [KGO59], pp. 469-470. It doesn’ t trouble our particular process, though. We suppose that the 
randomness inherent in the process of finding defects in software overshadows Slutsky-Yule. 

9 Regrettably, we no longer have a record of which literature we consulted. 
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Figure 1: defect rate, 25-hour moving average 

 

Figure 2: defect rate, 50-hour moving average 
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Figure 3: defect rate, 100-hour moving average 

 

 

 

Figure 4: defect rate, 100-hour moving average, non-weighted 
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Figure 5 and Figure 6 demonstrate two other techniques we use to manage our software test process. 

 

Figure 5: defect rate with upper and lower bounds 

Figure 5 shows a calculation of upper and lower bounds for the defect rate. We use this to track our progress during 
the chaotic time in the test cycle when defects are being characterized, fixed, and closed at the same time that new 
(and hopefully better) versions of the software are released to the testers. The lower bound indicates a rate based 
only on defects already closed as “ Code Change”  or “ Won’ t Fix10.”  The upper bound assumes that all open defects 
are legitimate. In our experience, this has never been the case. Some defects are found to be duplicates of issues 
already submitted, others are “ pilot error”  or cannot be reproduced. The solid blue line in the graph is our best 
estimate of the defect rate. The points on this line are calculated by taking a percentage of the distance between the 
lower and upper bounds. The graph shown sets this parameter to 59%. 

While we use Figure 5 to estimate our progress, Figure 6 proactively helps us balance resources between finding 
new defects and fixing those that already have been found. It’ s a straightforward metric. Whenever the solid green 
line creeps too far away from the broken red line, we slow down or cease our testing effort while the development 
team catches up with repairs. When we first started measuring this phenomenon, we ceased testing altogether. We 
then learned that we didn’ t have to do that. We use a more active feedback system to keep some testers busy while 
we slowly close the gap. Mark Lambuth aptly calls this a “ rheostat”  in the test system. It takes advantage of queuing 
theory to optimize throughput. When we notice that defects have a higher in a particular set of features, we suspend 
testing on those features while the team fixed the code, and we concentrate on testing other features. 

                                                           
10 We do document “ Won’ t Fix”  issues with workarounds so our customers’  expectations are set correctly. 
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Figure 6: find and fix rate 

Counting source statements to measure defect density 

Table 2 reveals our organization’ s results in terms of defect density. According to [MD92], p. 22, the Cleanroom 
approach yields some of the best process results in the industry: between 0 and 1 defects per thousand lines of code 
(KLOC). We make a synonymous measure – thousands of non-commented source statements (KNCSS) – and our 
data demonstrates that we are achieving defect densities well within the realm of Cleanroom outcomes. 

The pragmatic measure we use to reassure ourselves that we are on the right track is that we are delighting our 
customers. We receive relatively few support calls, and our calls are weighted more toward enhancement requests. 
In the past, we have had to address system lockups and backlogs of customer-reported defects. (No more Bugbusters 
projects!) A competitor of ours used to show our product locking up in order to sell against us. We no longer hear 
such reports from the field. 

Project KNCSS Pre- 
release 
Defect 
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Post- 
release 
Defect 

Density 

A 1,637 0.252 0.015 

C 60 2.267 0.000 

D 98    1.143 0.010 

E 96  8.562 0.333 

F 446 3.303 0.157 

G 123 10.859 0.016 

Table 2: product defect densities before and after release 
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Measuring how a software system changes over time (turmoil) 

We define turmoil to be a measure of code stability. We calculate the turmoil of a release for the first time by 
identifying all source files at a point in time early in the development cycle. For subsequent data points, each file is 
compared against the previous version, and the number of non-commented source statements (NCSS) added, 
deleted, and changed is counted. The number of NCSS changed is then doubled. The rationale is that a changed line 
can be represented by the transformation: delete the old line, add the new one. 

We measure two types of turmoil over time. For snapshot turmoil, the differences are always measured against the 
baseline version. Incremental turmoil is measured by comparing the newer version against the version used for the 
previous turmoil measure. 

Figure 7: snapshot turmoil 

Snapshot turmoil (Figure 7) measures the accumulated turmoil since the release diverged from the baseline and plots 
the trend over time. It is useful for helping to determine the amount of testing effort needed. Presently, we use this 
data in a heuristic process to estimate testing effort. We intend someday to develop a model that is more rigorous, 
though.  

Incremental turmoil (Figure 8) is a differential between the times plotted. It is useful for measuring the stability of 
the code and for tracking progress toward closure. We always see a pattern of a very large number of initial changes 
followed by some oscillation between periods of large and small changes. We don’ t expect the entire product to be 
ready for testing at once, and incremental turmoil reflects the arrival of features over time as they are sequenced into 
the release according to our plans. 

The graph in Figure 9 is our way of “ zooming in”  on the most recent activity. In our experience, incremental turmoil 
never falls completely to zero. When activity slows into the hundreds of lines changed, we become confident that 
the code is nearly stable enough to release. At that time, we “ lock down”  the source code and restrict changes to 
engineers who apply for “ tickets”  with managers. This has proven to be very effective in enforcement of release 
deadlines. 
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Figure 8: incremental turmoil 

Figure 9: incremental turmoil, last three publishes 
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One Other Technique 

In addition to the SRE methods described in this paper, we also attribute our success to a controlled software 
development process that focuses on three levels of integration. First, developers work in isolation from each other 
in their own developer workspaces. Then they publish their code to a feature integration workspace, where their 
changes are tested with others working on the same feature. Sometimes only one engineer works on a feature; then 
this is a trivial step. But sometimes we have a whole squad11 of engineers integrating a very complex feature. They 
work together to ensure that their feature works. Finally, we use a release integration workspace to integrate the 
entire product release comprised of several features. The detailed operation of our entire software development 
process is the subject of a different paper yet to be written. 

Conclusion 
I have introduced the reader to the context of our decade-long practice of software development and have proceeded 
to discuss the most significant SRE processes and techniques that we use to ensure the quality of our software. 

• Applying the “ Black Team”  principle 

• Measuring test time 

• Weighting defects 

• Adjusting the moving average to smooth the defect rate 

• Counting source statements to measure defect density 

• Measuring how a software system changes over time (turmoil) 

This paper does not claim to be an academic study; rather, it has presented samples of actual data that we are using 
to run our business. I have demonstrated that our pragmatic approach – far less rigorous than models such as Musa’ s 
SRE [JM99] and Dyer’ s Cleanroom [MD92] – achieves remarkable, measurable results. 

                                                           
11 The word “ squad”  was deliberately chosen for its military shades of meaning – the basic tactical unit whose size varies “ greatly”  but is usually 
in the range of 4 to12. See http://www.fas.org/man/dod-101/army/unit/squad.htm. 
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